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Abstract— We propose a system for detecting bids for eye
contact directed from a child to an adult who is wearing
a point-of-view camera. The camera captures an egocentric
view of the child-adult interaction from the adult’s perspective.
We detect and analyze the child’s face in the egocentric
video in order to automatically identify moments in which
the child is trying to make eye contact with the adult. We
present a learning-based method that couples a pose-dependent
appearance model with a temporal Conditional Random Field
(CRF). We present encouraging findings from an experimental
evaluation using a newly collected dataset of 12 children. Our
method outperforms state-of-the-art approaches and enables
measuring gaze behavior in naturalistic social interactions.

[. INTRODUCTION

Our paper presents a novel method for detecting a child’s
bids for eye contact with an interactive partner'. Eye contact
is a powerful social signal and plays a crucial role in
regulating social interactions from the first months of life
[17]. Before they are able to speak, infants and toddlers
communicate with others using well-timed looks coordinated
with gestures and vocalizations [26], [14]. Eye contact also
plays a key role in joint attention, used to denote a class of
behaviors in which children use gaze and gesture to sponta-
neously create or indicate a shared point of reference with
another person [28]. Beyond its importance and relevance
to the study of typical development, eye contact represents
a key area of focus for those studying autism. Atypical
patterns of gaze, eye contact, and joint attention have been
identified as among the earliest indicators of autism in the
first two years of life [15], [32], [16], and continue to
characterize individuals with autism throughout childhood
and adolescence [36], [19].

In spite of the developmental importance of gaze behavior
in general, and especially in social interactions, there cur-
rently exist very few good methods for collecting large-scale
measurements of these behaviors in the course of naturalistic
interactions. A classical psychology setting involves multiple
static cameras recording the scene from different view points.
This setup is feasible in a laboratory setting, but it is not
amenable to collecting data over a long period of time
or across a variety of different environments. In addition,
it is extremely challenging for human coders using only
environment-mounted cameras to accurately and reliably
determine whether a child is making eye contact or looking
at other parts of the face. An alternative solution is to use eye
tracking methods, which are accurate and can be applied to
large numbers of subjects. However, this approach requires a
child to either passively view content on a monitor screen or
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wear a portable gaze-tracker. Neither of these are completely
suitable for naturalistic, face-to-face interactions. Even if we
can mimic a social interaction using monitors [13], it is not
clear that the gaze behavior in such a setting will reflect gaze
behavior in the real world [11].

To address the limitations of previous approaches, we
propose to measure gaze behavior in naturalistic social
interactions by using a point-of-view (POV) camera worn
by the social partner of the person whose gaze is of interest.
We note that such an egocentric setting is a particularly good
vehicle for eye contact detection, as it provides high quality
visual data, e.g. consistent near-frontal view faces, higher
resolution eye regions and less occlusion. Our approach
capitalizes on the increased availability of wearable POV
cameras such as Google Glass® and Pivothead®. We begin
with instrumenting the child’s social partner with a pair of
glasses containing a high-definition outward-facing camera.
The camera is placed close to the social partner’s eyes and
aligned with his or her point of view, and naturally captures
the child’s face and looks toward the partner’s eyes during an
interaction. We apply facial analysis to the egocentric video
and design a learning based approach to determine when the
child is looking toward the camera, as an approximation of
the child’s looking toward the partner’s eyes. We show that
these events cover most of the child’s bids for eye contact.

Detecting bids for eye contact in such videos is a chal-
lenging problem. The appearance of the human eye is quite
diverse. For example, eye regions under two different head
poses can look similar yet be perceived as different gaze
behaviors [22]. We address this issue by learning a pose-
dependent appearance model for detecting bids for eye
contact at each frame. These frame level results are further
combined into a sequential Conditional Random Field (CRF)
[21] to model the temporal events of bids for eye contact.
Our method thus provides both a frame level and an event
level estimate of the child’s bids for eye contact. To evaluate
our method, we collected a dataset of 12 sessions consisting
of a semi-structured play interaction between an adult and a
child. Annotations from 5 coders indicate a high annotation
consistency with a very small probability of missing the bids
in the egocentric video. Our method reaches a high accuracy
against human annotations on the dataset. Our benchmark
also demonstrates that our approach outperforms state-of-
the-art gaze estimation methods. For the rest of the paper,
we use the terms “bid for eye contact” and “eye contact”
interchangeably if no ambiguity occurs. It is worth noting
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Fig. 1: Overview of our approach. 1: Extract frames from an egocentric video; 2: Perform face detection on each frame; track
facial landmarks; estimate head pose. 3~5 Training phase: Cluster faces based on head poses; crop eye regions based on
facial landmarks and extract features from the cropped eye regions; train a binary classifier for each cluster independently;
Testing phase: Find the appropriate classifier for eye region features via pose estimation. 6: Aggregate frame level results
and model temporal information via a linear-chain CRF. 7: Detect events based on labels from CRF.

that the gaze direction of the camera wearer is not considered
in our setting.

The contributions of this paper are: 1) the first dataset of
the egocentric videos collected in the course of a naturalistic
adult-child interaction; 2) a method for detecting bids for
eye contact that uses pose-dependent appearance features and
attains better performance than pose-independent approaches
at the frame level in an egocentric setting; 3) an approach
to detecting bids for eye contact at the event level by ag-
gregating the frame level results and modeling the temporal
structure via CRF. To the best of our knowledge, we are the
first to detect bids for eye contact events in videos.

II. RELATED WORK
A. Appearance-Based Gaze Estimation

Much recent work on gaze estimation has focused on
estimating gaze direction using static cameras [37], [39],
[25], [40]. In particular, Smith et al. [37] use eye region
images to train a classifier to detect if the user is looking
at the camera. Sugano et al. [39] use a large amount of
cross-subject training data to train a 3D gaze estimator,
which is person- and head pose-independent. Schneider et al.
[34] perform a manifold embedding for each person in the
training dataset and learn a linear transformation to estimate
gaze. All these approaches are trained and tested on datasets
composed of images of adults’ faces collected in a controlled
and constrained setting. In contrast, our dataset consists of
children’s faces in egocentric videos during a naturalistic
interaction with an adult.

The most relevant work is from [43]. Ye et al. [43]
use wearable gaze-tracking glasses to detect adult-child eye
contact by using commercially available gaze estimation
software*. Our work differs from Ye et al. in three key areas:
1) we improve the performance of single frame eye contact
detection by extracting appearance features from eye region
images; 2) we consider the dependency between head pose
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and gaze direction and build a pose-dependent appearance
model; 3) we embed the appearance model into a temporal
CRF, which allows us to extract eye contact events in an
egocentric video.

B. Egocentric Vision

There is a growing interest in using wearable cameras
in computer vision, motivated by advances in hardware
technology. Most work has focused on understanding the first
person’s actions/activities [38], [8], [18], [44]. Only a few
works address social interactions [9], [33] or gaze behavior
[24]. Fathi et al. [9] model the visual attention of people in
a social setting via face detection and head pose estimation.
Ryoo and Matthies [33] integrate global and local motion
features to recognize the physical interactions between a
human and a robot equipped with a camera. Li et al. [24]
estimate the first person’s gaze direction by leveraging the
implicit cues in the camera wearer’s head movement. None
of these previous works address the modeling of eye contact
during a social interaction.

C. Eye-Tracking for Identifying Developmental Disorders

A large body of behavioral research indicates that indi-
viduals with diagnoses on the autism spectrum have atypical
patterns of eye gaze and attention, particularly in the context
of social interactions [5], [23], [35]. Eye-tracking studies us-
ing monitor-based technologies suggest that individuals with
autism, both adults [20] as well as toddlers and preschool-
age children [3], [16], show more fixations to the mouth and
fewer fixations to the eyes when viewing scenes of dynamic
social interactions as compared to typically developing and
developmentally delayed individuals. Importantly, atypical
patterns of social gaze may already be evident by 12 to 24
months of age in children who go on to receive a diagnosis
of autism (e.g. [46], [41]).

D. Eye-Tracking for Interaction with Children

Several methods for gathering eye-tracking signals from
infants in the course of naturalistic interactions have been
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(a) OMRON (b) IntraFace

Fig. 2: Face Detection using OMRON OKAO Vision is

shown in Fig. 2a. Facial landmarks tracking and head pose

estimation using IntraFace are shown in Fig. 2b. The com-

bination of OMRON and IntraFace provides accurate eye
corner (green dots) localization and head pose estimation.

proposed [29], [12], [13], [45]. In particular, Noris et. al
[29] present a wearable eye-tracking system for infants and
compare the statistics of gaze behavior between typically
developing children and children with autism in a dyadic
interaction. Yu and Smith [45] ask parents and their children
to wear a head-mounted eye tracking system during toy play
to examine how they coordinate attention to objects held by
the self vs. the social partner. Guo and Feng [13] measure
child-parent joint attention during a storybook reading task
by showing the same book on two different screens and
simultaneously tracking the gaze of the parent and child with
two separate eye trackers. However, these previous studies
either relied on a specially designed wearable eye trackers
[29], [12], [27], or limited the interaction to a computer
screen [13]. Our method addresses the problem of bids
for eye contact, and enables detection of eye contact in a
naturalistic interaction without instrumenting the child.

III. APPROACH

Fig. 1 presents an overview of our method. We take an
egocentric video as input and detect faces in each frame. Face
detection is followed by facial landmark tracking and head
pose estimation. Eye regions are cropped using the landmarks
and features are extracted from cropped regions. We divide
the faces into clusters based on their poses and train a binary
classifier for each pose cluster independently. At the testing
phase, the classifiers are applied at each frame and the results
are aggregated. We further combine single frame results into
a temporal CRF. We use Forward-Backward algorithm to
perform inference in the CRF model. Our final output is a
set of eye contact events in an egocentric video.

A. Pre-Processing

We use the OMRON OKAO Vision software’ to detect
the child’s face in the egocentric video captured by a camera
worn by the social partner. OMRON OKAO Vision is a com-
mercial facial analysis software that includes face detection.
For each frame, the software outputs a bounding box as the
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face location in the image (Fig. 2a). Using the bounding box,
we further track facial landmarks and estimate head pose of
the detected face using a publicly available face alignment
system, IntraFace® [42]. IntraFace extends the cascaded pose
regression [6] with a Supervised Descent Method (SDM)
for tracking facial landmarks. We also estimate head pose
using the tracked landmarks. The head pose is composed
of three degrees of freedom — yaw, pitch and roll. Fig.
2b shows a visualization of tracked facial landmarks and
estimated head pose. The green dots in Fig. 2b indicate the
corners of left and right eyes. The combination of OMRON
face detector and IntraFace face alignment tool offers best
results for face detection and facial landmarks (including eye
corners) tracking. Yet, both OMRON and IntraFace, designed
for a static camera, can only find 83.02% of frames that are
identified as eye contact by human annotators due to motion
blur, occlusions, and other factors (see Sec. IV-B for more
details). However, when a face is detected, the landmarks are
highly accurate.

B. Frame Level Eye Contact Detection

We first present our method for detecting eye contact at
each frame. Eye contact detection is implemented as a binary
classification over every frame in the video. The label can
be either eye contact or not. Our single frame model consists
of two parts: clustering head poses and modeling pose-
dependent appearance features. We detail each step here.

1) Head Pose Clustering: We estimate the head pose &,
at frame ¢ using the landmarks from IntraFace by registering
the landmarks into an average 3D face. The appearance of
the human eye region varies significantly under different
head poses, even during moments of eye contact from the
same individual. Fig. 3 illustrates an example where the
appearance of the eye regions stays the same, yet humans
perceive different gaze behavior under different head poses.
To address this issue, we propose a pose-dependent ap-
pearance model inspired by [40]. The idea is to model the
appearance of eye regions separately for each head pose.
We first cluster head poses using Gaussian Mixture Model
(GMM) and train a classifier for each pose cluster using
appearance features. We only cluster the head poses using
pitch and yaw, as the rotation can be resolved by a simple
affine transformation. The number of clusters is set to 3 for
all our experiments.

2) Feature Extraction: Using facial landmarks from In-
traFace, the eye regions (left and right) are cropped from
each frame using eye corners. We align the tilted eye regions
using affine transformation and resize the regions into a fixed
resolution of 73 x 37. Affine transformation cancels the in-
plane rotation and makes eye region rotation invariant. Fig.
3 shows the cropped eye regions. To generate more training
samples, we randomly perturb the eye corner locations by an
offset of 2 pixels. From the cropped eye regions, we extract
appearance features A, at frame ¢ by concatenating the feature
vectors from both eyes. We experimented with LBP [30],

Shttp://www.humansensing.cs.cmu.edu/intraface/


http://www.omron.com/r_d/coretech/vision/okao.html
http://www.omron.com/r_d/coretech/vision/okao.html
http://www.humansensing.cs.cmu.edu/intraface/

Ros” AN

Fig. 3: Top left: A sketch from [22] demonstrates the
dependence between head pose and gaze behavior. The two
eye regions are very similar yet only the left one is perceived
as eye contact. Bottom left: An example from our dataset.
The two frames are both marked as eye contact yet the visual
appearance looks quite different. Right: eye regions from our
dataset. It is very difficult to tell if it is an eye contact given
only the eye region.

CNN feature [2], and HOG from [10], which is a modified
version of the original Histogram of Oriented Gradients [4].
Results can be found in Sec. IV-B.

3) Single Frame Eye Contact Detection: We consider sin-
gle frame eye contact detection to be a binary classification
problem. We denote the input head pose as H; and the
appearance feature as A, at frame f. We give a binary label
y; to frame ¢, where 1 indicates eye contact and O otherwise.
The conditional probability P(y;|H;,A,) is modeled as

= f P(he|H)P

he=1

P(yf‘HhAl) (yt|hCaA)7 (1)
where h. is the indicator variable for c-th cluster of head
pose in GMM. The key intuition is to consider each cluster
as a sub-problem and average the results of the classifier
from each cluster at the last step. &, can also be considered
as a latent variable where (1) is interpreted as a Bayesian
inference. We choose Random Forests [1] as our classifier
for P(y;|hc,A) with 100 trees and 10 splits per node. Fig. 4a
illustrates the factor graph of the model. We further consider
the negative log-likelihood u(x;,y;) of P(y;|H;,A;) as

—log P(yi|x) =

k
M(Xl,y[) = _log Z P(hC‘H)P(ny/lL?A)v (2)

he=1
where x, represents both head pose and appearance feature
at frame ¢, and u(x;,y,) is used later as the unary potential
in our temporal model — a linear-chain CRF.
We name our single frame eye contact model as Pose-
dependent Egocentric Eye Contact detection, or PEEC.

C. Event Level Eye Contact Detection

Our ultimate goal is to find onsets and offsets of eye
contact events within an egocentric video. This requires us
to move beyond single frame eye contact detection. We
consider a simple linear-chain CRF as the temporal model.
The CRF smoothes the single frame results and produces
more accurate onsets and offsets of the eye contact events.

(a) Factor Graph Represen-
tation of Single Frame Eye
Contact Detection Model.

(b) Linear-Chain CRF Repre-
sentation of Sequence Eye Con-
tact Detection Model.

Fig. 4: Graphical model for eye contact detection. Fig. 4a:
single frame model. y is the binary label of eye contact
at each frame, A represents appearance features from eye
regions, H is the head pose given by landmarks, and h,
is an indicator variable for head pose cluster c. Our model
extracts pose-dependent appearance features for single frame
eye contact detection. Fig. 4b: CRF for events. y, is the
binary label of eye contact at frame 7, and x; consists of
both appearance feature and head pose at frame . Our model
smoothes the single frame results by a Potts model.

We expand our single frame model (PEEC) (Fig. 4a) to
construct a temporal Conditional Random Field (CRF). The
CRF represents the event detection as sequential labeling.
Fig. 4b illustrates the linear-chain CRF of our sequence
model. Denote n as the total number of frames. The model
can be expressed as

P({yeH{xe}) HPYt|xt H Ot Ye1 X, %041)

1

= EeXP(

where E({x;},{y:}) is the energy function and Z is the
normalization factor. We further simplified the model by
using a Markov assumption. Now we have

n—1

n
=Y ule, )+ Y VO X %), (4)

t=1 =1

3
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u(x;,y;) is given by the negative log likelihood in (2).
V(Vr,Yi+1,%,%+1) is the temporal pairwise potential. We use
the standard Potts model for the pairwise term as

VO, Vi1, % X141)

H,.\ —H, i
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—H S ATS)
o} o3
Our definition in (5) serves as a penalty function that
activates when the labels of two adjacent frames are different.
We use Euclidean distance (¢2-norm) as a metric to measure
the differences of the head pose H;,H;; and the appearance
feature A;,A;+1 between two adjacent frames.

By minimizing the energy function in (4), we get the

solution of CRF as sequential labels.

YT7YE7-~~, :’;7 argmln E(y17y27 ,yn,xl’xz’---,xn)- (6)
We can obtain events of eye contact by merging a set of
consecutive 1’s over the results of CRF.

Learning: Since there are only three parameters, A, oy



Fig. 5: Data Collection Setup. Left image: the adult (seated
on the left) wears a pair of video-recording glasses and
interacts with the child (seated on the right). Right images:
two sample frames from egocentric videos.

and o4, in our model (5), we perform a grid search over a
separate validation set. The search is limited within [0.1,10],
which is equally spaced in log scale.

Inference: Given the unary and pairwise potentials, we can
detect eye contact event by inferring the best label of every
single frame. The linear-chain CRF allows us to use the
efficient Forward-Backward algorithm for the inference task.

IV. EXPERIMENTS AND RESULTS

We conduct a series of experiments and report the results
in this section. We begin by the introducing a new dataset
of dyadic social interaction between an adult and a child.
We further report both frame level and event level results
of our method on the dataset, in comparison to state-of-the-
art methods. Our method outperforms all previous methods
and attains high accuracy when compared against human
annotations.

A. Data Collection and Annotation

We collected egocentric videos from 12 adult-child inter-
actions. Child subjects ranged in age from 18 to 28 months,
an age interval selected as it is relevant to early detection
of developmental disorders such as autism. Each session
consists of a 3-5 minute table-top play interaction between
a child and an adult examiner, leading to over 85K frames
in total. The child was seated across from the adult at a
small table. The adult engages the child in various activities,
following the same protocol as our earlier MMDB work’.
See [31] for a detailed description of the protocol. All child
subjects participated with consent from their parents. Videos
were recorded by a pair of Pivothead glasses worn by the
adult while interacting with the child. The resolution of
the video is 1280 x 720 with 30 frames per second. Fig. 5
shows the setup of a data collection session. In this setting,
we observe a high quality image of the child’s face in the
egocentric video recorded by the glasses.

Each session was independently scored by five different
annotators to flag frame level onsets and offsets of each
instance of the child bids for eye contact with the examiner.
The annotators used ELAN, an open source video annotation

"http://cbi.gatech.edu/mmdb/

Session ID | Age (Month) | Unscorable (%) | Consistency
1 23 0.42 0.72
2 23 1.16 0.91
3 19 4.00 0.85
4 17 4.46 0.80
5 28 1.53 0.90
6 24 4.48 0.92
7 24 4.98 0.89
8 24 0.00 0.90
9 22 2.73 0.90
10 20 8.13 0.86
11 29 8.90 0.84
12 18 4.97 0.88
[ Average [ 22.48 [ 3.82(£2.82) [ 0.86(+0.06) ]

TABLE I: Statistics of each session in our experiments. The
third column (Unscorable) indicates the percentage of frames
the child’s eye contact cannot be determined based on the
egocentric video (because the child’s eyes are off camera),
but can be determined using the videos from stationary
cameras. The fourth column (Consistency) indicates the
average Intersection over Union among different annotators.

tool®, and viewed three synchronized video feeds from each
session: (1) the egocentric video recorded by the Pivothead
glasses worn by the adult; (2) an HD video recorded from
a stationary camera placed behind and to the left of the
examiner such that it captured the child’s face and the back
of the examiner’s head, and (3) an HD video recorded from
a stationary camera placed behind and to the left of the child
such that it captured the examiner’s face and the back of the
child’s head. The annotators thus relied on all three videos
in making their determination whether the child looked into
the examiner’s eyes. The videos together with the annotations
will be made available to the research community.

Given multiple annotations of the same session, we mea-
sure the annotation consistency by comparing the Intersec-
tion, the frames where both annotators marked as eye contact,
over Union, the frames where that any annotator marked as
eye contact, between each pair of annotators (IoU). These
pairwise consistencies are then averaged for each session
and reported in the last column of Table I as “Consistency”.
The average IoU over all sessions is 86.42%, indicating a
very high consistency among our annotators. This allows us
to use a simple majority voting on every frame to obtain
ground truth eye contact.

There are moments when the child’s eyes are not visible in
the egocentric video but a determination of the presence or
absence of eye contact can still be made from the stationary
cameras. Thus the annotators further flagged the frame level
onset and offset of any period when the child’s eyes were
not visible in the egocentric video. We explore the impact of
such events when evaluating the accuracy of the automated
eye contact detection against ground truth annotation. We
measure the average percentage of frames marked as eye
contact while the child’s eyes are missing in the egocentric
video, denoted as “Unscorable” in Table I. On average, only
3.82% of the frames are missing. This small percentage

8http://tla.mpi.nl/tools/tla-tools/elan/
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Comparison of Methods and Features

PEEC(HOG)
0.3/ —PEEC(LBP)
——PEEC(CNN)

0.2} — GAZE LOCKING
@ OMRON

011  HUMAN
PEEC(HOG+CRF)

00 0.2 0.4 0.6 0.8 1
Recall

Fig. 6: Average PR curve of different methods and features.
The dot on each PR curve indicates the threshold picked by
the corresponding maximum F; score.

suggest that 1) egocentric video is able to capture almost
all of the eye contact events in our setting; 2) we can safely
exclude these frames from our benchmark, as they won’t
have significant impact on the results.

B. Single Frame Eye Contact Detection

Our first experiment benchmarks the performance of single
frame eye contact detection. The detection is considered as a
binary classification problem at every frame. As the frames
marked as eye contact only occupy a small portion of the
data, we use Precision-Recall (PR) curve and F; score as
our evaluation criteria. More precisely, we have

) precision - recall

F (N

precision+ recall’
where precision = #, recall = ﬁ, tp is the number
true positive samples, fp is number of false positive samples,
and fn is the number of false negative samples. To fairly
compare the performance across methods, we use leave-one-
subject-out cross validation for all experiments. The results
are thus reported by averaging all 12 folds.

We compare PEEC against two baseline state-of-the-art
methods in [37] and [43]. We also test different features
using our pipeline, including LBP, HOG and CNN features.
The CNN feature we use is pre-trained on the ImageNet
2012 dataset, and then extracted from the 7¢th layer without
fine-tuning [2]. All results are reported on our dataset. Fig. 6
shows the PR curve for our method with different features,
in comparison to [37] (Gaze Locking), [43] (OMRON), and
human consistency. Our method with CNN features performs
slightly worse than our methods with HOG features. This is
probably due to the relatively low resolution of eye region
images and the lack of fine-tuning. Since HOG outperforms
all other features, we choose HOG as the appearance feature
for our PEEC model in all subsequent analyses.

We also perform significance tests between PEEC and two
baseline methods. The tests are based on the F; scores of
all 12 sessions using ¢-test. The p-value between PEEC and

;{%; ?
v'e

(a) Face detection failed
due to partial occlusion.

=

(b) Face detection failed
due to face rotation.

Fig. 7: Our method is not able to detect eye contact when
face detection is failed. These failure cases occupy 16.98%
of total eye contact frames in our dataset.

Precision | Recall F; Score

OMRON [43] 0.5151 0.7179 0.5998
Gaze Locking [37] 0.6028 0.6454 0.6234
PEEC 0.7929 0.7268 0.7584
PEEC+CRF 0.7920 0.7664 0.7790

TABLE II: Performance Comparison among OMRON, Gaze
Locking, PEEC, and PEEC+CRF.

OMRON is 0.00020, and the p-value between PEEC and
Gaze Locking is 0.00003; both p-values are less than 0.05.

We can further improve the PEEC frame level result by
adding CRF. Table II shows the precision, recall and Fj
scores of two baseline methods, PEEC, and PEEC+CRF at
their best thresholds. PEEC+CREF achieves the best recall and
Fj score.

As shown in Fig. 6, PEEC+CRF does not attain human-
level performance. This is partly due to the reason that
causes all PR curves in Fig. 6 to not reach (1,0): in
our dataset, 16.98% of the faces that are identified as eye
contact by human annotators cannot be detected by our
face detector. Some of these faces are partially occluded
during the interaction, nonetheless, humans are still be able
to identify eye contact from them (see Fig. 7a). Other failure
cases are caused by extreme face rotation (see Fig. 7b), due to
either the camera pose (the head pose of the camera wearer)
or the head pose of the child. Detecting the child’s face in
egocentric videos is a major bottleneck of our method, and
likely results from the fact that most current face detection
methods were trained on images of adult faces captured by
stationary cameras.

C. Event Level Eye Contact Detection

We take one step further to benchmark the event detection
results. Similar to object detection in computer vision, we
use the Intersection over Union (IoU) between two events
as the matching criteria. A detected event is considered as
matching a ground truth event if their IoU score is larger than
a threshold (typically 0.5). We also associate a confidence
score with each detected event by simply averaging the single
frame probabilities. This confidence allows us to characterize
our detection output. We use average precision (AP) to
evaluate the event detection. The AP describes the shape
of the precision-recall curve, and is defined as the mean



Frame Level and Event Level Performance Comparison Across 12 Sessions
1 WFrame Level (F1)
MEvent Level (AP)
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Fig. 8: The blue bars indicate frame level results (F; score),
and the red bars indicate event level results (AP). Both
frame level and event level results are based on the same
PEEC+CREF output. There exists a large discrepancy between
frame level and event level results in some sessions.

precision at a set of eleven equally spaced recall levels
[07 ,}17 °y ]:

p(r), (®)

where p is the precision, r is recall, and p(r) is the measured
precision at recall . We set m = 10 similar to [7]. All results
are reported using leave-one-subject out cross validation.

Our event detection results are obtained by PEEC+CRF
output. We achieve an average AP of 0.5490 across the 12
sessions. We emphasis that event detection is significantly
different from single frame detection. The former requires
obtaining a continuous set of frames with its precise onset
and offset, and the latter considers each frame independently.
We plot the same PEEC+CRF output evaluated by frame
level F; scores and event level AP in Fig. 8 for all sessions.
There exists a large discrepancy between frame level and
event level scores. A number of sessions (1, 2, 4, 9) have a
fairly good F; score yet the corresponding AP is low.

In Fig. 9, we visualize PEEC+CRF output against the
ground truth for one of the sessions with high F; and low AP.
If we look at each frame separately, our method successfully
picked most of the eye contact frames. If we look at the
events, however, we failed to cover a large part of the events.
We amplify a failure case in Fig. 9, where our method
generates a small gap within a ground truth event and breaks
it into two events. Due to low IoU scores, our evaluation
criteria fail to match either of these events to the ground truth.
We further sample a few frames within this event in Fig. 9.
The gap is caused by partial occlusion of the face, which also
results in failed face detection. Even a small amount of face
detection failures can lead to a large discrepancy between
frame level and event level results.

We also experimented with different IoU thresholds. As
we vary the IoU threshold from 0.3 to 0.7 (Fig. 10), AP
scores of both PEEC-based and PEEC+CRF-based event
detection increase as the IoU threshold decreases. Moreover,
Fig. 10 shows that our CRF model boosts the performance
of event detection over all IoU thresholds, especially when
the IoU threshold is high (IoU = 0.7).

Detected|
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Fig. 9: Event visualization for session 2. Bottom row:
comparison between detected events based on PEEC+CRF
outputs and ground truth events. The red bars indicate
ground truth events, and the green bars indicate detected
events. Top row: Zoomed-in image of the gap between two
detected events. Sample frames from the detected events
(green bounding box) and from the gap between the two
detections (red bounding box). The axis below the images
indicates the corresponding frame numbers of these images.
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Fig. 10: AP of event detection with different IoU thresholds.
The red bars are results based on PEEC+CRF, and the blue
bars are results based solely on PEEC.

V. CONCLUSION AND FUTURE WORK

We consider the detection of bids for eye contact directed
from a child to an adult who is wearing a POV camera
during a naturalistic social interaction. We propose the first
system that is capable of detecting the events of bids for eye
contact in an egocentric video based on PEEC and CRF. We
also present the first dataset of egocentric videos collected
in the course of child-adult social interactions. The dataset
includes 12 child subjects and will be made available to the
research community. We provide a thorough evaluation of
our method by comparing it to previous approaches. Our
results outperform all other state-of-the-art methods by a
large margin.

The major bottleneck of our method is the face detector
in egocentric videos. Current face detection and alignment
systems are not designed for child’s face in an egocentric
setting. We plan to develop a face detection and alignment
pipeline tailored for egocentric videos, and extend our work
to detect the child’s looks toward objects, as well as the
child’s gaze shift between objects and eyes.
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