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1. Introduction

We record, and analyze, and present to the community,
KrishnaCam, a large (7.6 million frames, 70 hours) egocen-
tric video stream along with GPS position, acceleration and
body orientation data spanning nine months of the life of a
computer vision graduate student. We explore and exploit
the inherent redundancies in this rich visual data stream to
answer simple scene understanding questions such as: How
much novel visual information does the student see each
day? Given a single egocentric photograph of a scene, can
we predict where the student might walk next? We find that
given our large video database, simple, nearest-neighbor
methods are surprisingly adept baselines for these tasks,
even in scenes and scenarios where the camera wearer has
never been before. For example, we demonstrate the ability
to predict the near-future trajectory of the student in broad
set of outdoor situations that includes following sidewalks,
stopping to wait for a bus, taking a daily path to work, and
the lack of movement while eating food.

2. The KrishnaCam Dataset

Over a period of nine months (September 2014 to May
2015) we collected egocentric video of the daily outdoor
activities of a single graduate student. Whenever possible,
the student attempted to continuously record video outdoors
(technical, legal, and social constraints limited the scope
recording that could be performed). The dataset, acquired
using Google Glass, consists of 460 unique video record-
ings, each ranging in length from a few minutes to about
a half hour of video. Recording took place over a wide
geographic area (including many different neighborhoods
of the student’s home city and trips out of the city), con-
tains visual diversity due to seasonal change (snow in winter
months), and day-and-night recording. The videos capture
the student’s movement and interactions with others in a di-
verse set of residential, campus, and urban areas, as well as
in multiple city parks. The student’s GPS position, accelera-
tion, and orientation was also captured using a smart phone
in the student’s pocket, and subsequently synced with the

Kayvon Fatahalian'

Alexei A. Efros?

2UC Berkeley  2UC Davis

Novel Data Growth with Time

N
o

Novel Periods
+

—

e o 9
> o @

o
N

Fraction of “novel” frames

10 20 30 40 50 60
Total Hours of Recording

o
o
.

Figure 1. Due to the redundency in daily life, the rate novel frames
are observed decreases with time. Days recording in new locations
are easily identified as spikes in the graph near 26 and 40 hours

video data. Given this collection methodology, the dataset’s
non-visual sensor readings describe the configuration of the
student’s body, not the orientation or acceleration of the
head-mounted camera.

In total, the dataset contains 70.2 hours of 720p, 30 fps
video (7.6 million total frames) making it larger than prior
single-individual egocentric datasets recently studied in
computer vision [[1} [2].

3. Novel Visual Data Growth

Hypothesizing that the life of a computer vision gradu-
ate student is highly redundant, we attempted to quantify
the amount of novel visual data observed by the camera
each day. Specifically, for each frame, we identify its top-
5 nearest neighbor frames from prior recordings. We use
cosine similarity between layer-5 outputs (after pooling) of
the MIT Places-Hybrid network [3]] as a distance metric for
nearest neighbor computations. We label a frame as novel if
the average similarity of its top-5 nearest neighbors is below
a threshold, or if five valid neighbors do not exist given the
selection constraints. Given this definition, Figure |1| plots
the fraction of novel frames observed in each hour of the
first 60 hours of recording. As to be expected, at the start
of recording a large fraction of frames are novel, but this



Prediction of general behaviors that hold across different events and/or locations: (A-B) following a sidewalk

(in both frequently visited and novel locations) (C) remaining stationary while eating food, (D-E) stopping at new

intersections or when there is traffic.

Figure 2. Examples of successful trajectory predictions.

fraction drops as more data is recorded. The two peaks of
the graph (steep rises in the amount of novel visual data)
correspond to days the student spent outside his home city.

4. Predicting Trajectories

We attempted to use the motion-annotated video dataset
(KrishnaCam) to address the simple scene-understanding
question: given a single image, can we predict where the
student would walk next in the scene. We estimate the stu-
dent’s motion from accelerometer and orientation sensor
readings taken from a smart phone in the student’s pocket.
For trajectory prediction, we lean on the rich visual history
contained in our database and pursue a nearest-neighbor-
based approach. Given each new frame, we estimate the
camera wearer’s future trajectory as the average of the tra-
jectories of its top-10 nearest neighbors.

Figure [2] shows that nearest neighbor-based prediction
approach yields surprisingly accurate predictions across a
variety of scenes. In (A-B) the system is able to predict

common navigation behaviors such as the camera wearer
following the path and sidewalk, (C) remaining stationary
when eating, (D) stopping at an intersection, and not walk-
ing into the middle of traffic (E). In rows B-E of Figure
a large fraction of the nearest neighbor set comes from lo-
cations different from the query, resulting in the successful
transfer of motion information to new situations and envi-
ronments. (This transfer would not be possible using GPS!)
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