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Introduction Recent work on articulated pose estima-
tion [1, 7, 8, 9] has shown that a large amount of accurate
training data makes reliable and precise estimation possi-
ble. For human bodies, Motion Capture [1] can be used to
generate large datasets with sufficient accuracy. However,
creating accurate annotations for hand pose estimation is
far more difficult, and still an unsolved problem. Motion
Capture is not an option anymore, as it is not possible to use
fiducials to track the joints of a hand. Moreover, the human
hand has more degrees of freedom than are generally con-
sidered for 3D body tracking, and an even larger amount of
training data is probably required.

The appearance of depth sensors has made 3D hand pose
estimation easier, but has not solved the problem of the cre-
ation of training data entirely. Despite its importance, the
creation of a training set has been overlooked so far, and
authors have had to rely on ad hoc ways that are prone
to errors, as shown in Fig. 1. Complex multi-camera se-
tups [6, 9] together with tracking algorithms have typically
been used to create annotations. For example, Tompson et
al. [9] used a complex camera setup with three RGBD cam-
eras to fit a predefined 3D hand model. Looking closely
at the resulting data, it seems that the 3D model was often
manually adjusted to fit the sequences better and in between
these manually adjusted frames the fit can be poor. Further,
the dataset of [8] contains many misplaced annotations, as
discussed by [3]. Although recent datasets [7] have paid
more attention to high quality annotations, they still contain
annotation errors. These errors result in noisy training and
test data, and make training and evaluating uncertain.

Creating Training Data Efficiently For all of these rea-
sons, we developed a semi-automated approach that makes
it easy to annotate sequences of articulated poses in 3D.
Given a sequence of depth maps capturing a hand in mo-
tion, we want to estimate the 3D joint locations for each
depth map with minimal effort. Fig. 2 shows an overview
of our approach. We start by automatically selecting some
of the depth maps we will refer to as reference frames. Our
method selects these reference frames based on the appear-
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Figure 1: Recent hand pose datasets exhibit significant errors in
the 3D locations of the joints. (a) is from the ICVL dataset [8],
and (b) from the MSRA dataset [7]. Both datasets were annotated
by fitting a 3D hand model, which is prone to converge to a local
minimum. In contrast, (c) shows the annotations acquired with
our proposed method for the same frame as in (b). (Best viewed in
color)

ances of the frames over the whole sequence. For this, we
train an autoencoder that learns an unsupervised represen-
tation that is sensitive to image nuances due to hand articu-
lation. We use this representation to formalize the frame se-
lection as a submodular optimization. A user is then asked
to provide the 2D reprojections of the joints with visibility
information in these reference frames, and whether these
joints are closer or farther from the camera than the par-
ent joint in the hand skeleton tree [4], which we refer to
as z-order. This can be done easily and quickly, and we
use this information to automatically recover the 3D loca-
tions of the joints by solving a least-squares problem. Next,
we iteratively propagate these 3D locations from the refer-
ence frames to the remaining frames. We initialize the pose
of the frame with the pose of the visually closest reference
frame and optimize the local appearance together with spa-
tial constraints. This gives us an initialization for the joint
locations in all the frames. However, each frame is pro-
cessed independently. We can improve the estimates further
by introducing temporal constraints on the 3D locations and
perform a global optimization, enforcing appearance, tem-
poral, and spatial constraints over all 3D locations for all
frames. If this inference fails for some frames, the annotator
can still provide additional 2D reprojections; by running the
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Figure 2: Overview of our method. We start by automatically selecting a subset of frames that have to be manually annotated. Then we
automatically infer the 3D locations from the annotations. Given the 3D locations for the reference frames, we propagate these locations
to the remaining frames, and run a global optimization over the full sequence. (Best viewed in color)

Figure 3: Egocentric 3D hand pose estimation is an appealing fea-
ture for different Augmented Reality or Human Computer Inter-
action applications. Our method made it possible to create a fully
annotated dataset of more than 2000 frames from an egocentric
viewpoint, which is considered to be very challenging [5]. (Best
viewed in color)

global inference again, a single additional annotation typi-
cally fixes many frames. We refer to our paper [2] for more
details. We will make the full code and dataset available on
our website.

Evaluation We evaluate our approach using both syn-
thetic data and real images. We first evaluate it on a syn-
thetic dataset, which is the only way to have depth maps
with ground truth 3D locations of the joints. On this dataset
we show, that our proposed reference frame selection can be
used to efficiently select the frames that maximize pose cov-
erage and simultaneously minimize the number of frames,
i.e. annotation work. Further, we evaluate the accuracy of
the automatically inferred 3D locations for the reference
frames. We obtain an average Euclidean 3D joint error of
3.6 mm only from 2D reprojections with visibility and z-
order. Our method is also robust to annotation noise. We
then show, that we can propagate the 3D joint locations to
the remaining frames. We achieve an average 3D joint error
of 5.5 mm over the full sequence by only requiring manual
annotations for 10% of all frames. We evaluate the impact
of the number of reference frames, and even for 1% anno-
tated frames the average 3D error is only 7.2 mm.

We then provide a qualitative evaluation on real images.
We show that we can improve the annotations of existing
datasets, which yield more accurate predicted poses. We
use the recent MSRA dataset [7], where we show that bet-
ter annotations improve the accuracy of a state-of-the-art
3D hand pose estimation method [3]. As Fig. 3 shows, our
approach also allows us to provide the first fully annotated
egocentric sequences, with more than 2000 frames in total.

Conclusion Given the recent developments in Deep
Learning, the creation of training data may now be the main
bottleneck in practical applications of Machine Learning for
hand pose estimation. Our method brings a much needed
solution to the creation of accurate 3D annotations of hand
poses. It avoids the need for motion capture systems, which
are cumbersome and cannot always be used. Moreover, it
could also be applied to any other articulated structures,
such as human bodies.
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